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MULTICOMPONENT ADSORPTION IN CONTINUOUS
COUNTERCURRENT EXCHANGERS

By HYUN-KU RHEE, R. ARIS, ano N. RRAMUNDSON
University of Minnesota
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A theoretical analysis of multicomponent adsorption in continuous countercurrent exchangers is
presented. The system is considered to be one-dimensional, isothermal, locally at equilibrium, and to have
negligible diffusion effects. With constant initial and entry data the mathematical problem is essentially
the same as for a fixed bed except for the boundary condition that suggests a free boundary analogue
since it is given by the conservation law itself. Therefore, the boundary discontinuity is naturally
encountered. With the Langmuir adsorption isotherm explicit forms for the Riemann invariants and
characteristic parameters are available and thus the theories of simple waves and of shock waves as well
as of interactions are readily established and applied to determine solutions. Dependence of the system
behaviour upon the flow rate ratio is discussed and the steady-state argument proves that the number of
steady states attainable in the contacting region is equal to the number of solute species present plus one.
Application is illustrated.
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INTRODUCTORY REMARKS

Continuous operations of adsorption exchangers are desirable from an engineering point of view
and are a common subject in chemical engineering text-books (see, for example, Treybal 1968).
Prevailing in those are the stcady-state analyses for a single solute with a finite resistance to mass
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188 HYUN-KU RHEE, R. ARIS AND N.R. AMUNDSON

transfer. An cquilibrium model for non-isothermal adsorption was recently suggested by Heerdt
(1969), who considered scmi-infinite systems with the Langmuir adsorption isotherm. Although the
gencral theory was not discussed, basic features were well cxplained by presenting illustrative
cxamples for a single solute and two solutes.

We wish in this paper to establish an equilibrium theory of multi-component adsorption in
continuous countercurrent exchangers. Since only convective transport is important, the equations
of equilibrium exchange form a quasilinear system of partial differential equations of first order.
For fixed beds a full discussion has been given by Rhee, Aris & Amundson (1970) and this is the
basis of our treatment here. Exchange columns of semi-infinite length as well as of finite length with
constant initial and entry data are considcred. The relevant boundary conditions are the matcrial
balances over each boundary itself and thus a free boundary analoguc is encountered.

The first section is concerned with the formulation of basic equations while in the sccond section
we introduce isotherms of Langmuir type and establish the basic theory of simple waves and of
shock waves as well as of interactions. The next section treats a semi-infinite column and there
the nature of the boundary is obscrved in detail. The analysis of finitc columns is the subject of §4
in which the steady states attainable are also discussed whereas in §5 a complete analysis of inter-
actions is performed. Finally, we consider and illustrate the problem of applying the theory by
gencrating a comprchensive numerical example.

NOTATION
The following are the principal symbols used in this paper. Dimensions are given in terms of’

mass (M), length (L), time (t), and amount of solute species (mol).

ith solute species
A(z)  cross-sectional area (L?)

4 boundary
c® characteristic of the Ath kind
¢ molar concentration of species /4, in fluid phase (mol/L?)
D 1+ il, K;c¢;, dimensionless parameter
P
J (k)-Riemann invariant, dimensionless
K; Langmuir adsorption isotherm parameter (mol/L3)—1
N limiting concentration of adsorbed solute (mol/L?)
n; molar concentration of adsorbed 4; (mol/L.?)
Q volumctric flow rate of fluid phase (L3/t)
AN (k)-shock line
t time (t)
u interstitial velocity of fluid phase (L/t)
v speed of solid phase (L/t)
x dimensionless position variable
V4 total length of the column (L)
z distance from the fluid entrance in the direction of {luid flow (L)

AL image of a (k)-simple wave in @ (M) or £2(M)
¢ fractional void space ol solid phase, dimensionless
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© fractional coverage of adsorption sites, dimensionless
Ay w(y D, dimensionless invariant
J (1 —¢)v/eu, volumetric flow rate ratio, dimensionless
v (1 —e) /e, volume ratio, dimensionless
£(D) inverse of data as a function of D, dimensionless
o characteristic direction in the physical plane, dimensionless
o8 direction of shock propagation, dimensionless
T dimensionless time variable
@ (M) M-dimensional concentration space
o, K,c;, dimensionless concentration of specics 4; in fluid phase
(M) M-dimensional w-space
2} characteristic paramecter, dimensionless
Brackets
[e¢] jump of the quantity a across a discontinuity
{a;}  collection of M elements a; associated with the subscript
Superscripts
2 entrance of fluid phase
b entrance of solid phase
i initial condition
" kth kind or (k)-constant state
1 left-hand side of shock
° fixed statc
r right-hand side of shock
s shock
0+ inside of the boundary #2
1- inside of the boundary %"
* higher value
Subscripts
eq equilibrium value
s.m  solute species in multicomponent systems
W kth kind
M total number of solute species or equivalently the most adsorbable species
5. stcady state
0 initial point
12,3 solute species 4y, 4,, A,
* lower value
Underlines
~--  constant statc
Overlines

N
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straight line
curved line
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190 HYUN-KU RHEE, R. ARIS AND N. R_RAMUNDSON

1. MATHEMATICAL FORMULATION

Throughout the present work we shall examine in detail what is known as an ideal exchange
column where the term ‘ideal’ will embody the following conditions:

1. The system is one-dimensional in the direction of flow.

2. The volumetric flow rate of each phase and the void fraction of the solid phase are constant.

3. The effect of diffusion is negligible compared with the convective transport and no channell-
ing occurs.

4. Local equilibrium is established between phases everywhere within the contacting region
at all times.

5. Adsorption process is isothermal and isochoric.

Let € be the void fraction of the solid phase moving at a speed v through a column of cross-
sectional area 4 (z), whereas the fluid phase flows countercurrently with interstitial velocity «.
¢; is the concentration of the species 4, in the fluid phase and #; its concentration in the solid
phase, both being expressed in moles per unit volume of their own phase. A schematic diagram of
the ideal column is given in figure 1.

B* B°
a
c}—e ¢, € —_—u —=cp
n‘{-—— VvV - 1-€ n; 4——71?
——— 2
Z

Ficure 1. Schematic diagram of an ideal exchange column.

(@) Continuous field

By considering the balance of the species 4; in a section between planes distant z and z+dz
from the fluid entrance to the column over a time interval (¢,£+4d¢) we have, in the limit, the

equation oc; (1—e€)v o, oc; 1—¢om
S e} Rt 3 | = . .
Q{az - az}+€A(z){at+ m} 0 (=1,2,..,M), (1.1)
where Q = eu(z) A(z) = constant volumetric flow rate of the fluid phase. (1.2)
1—- .
We shall put V= —E—e = volume ratio, , (1.3)
l1—cv . .
p=——_= volumetric flow rate ratio, (1.4)

and introduce the dimensionless independent variables defined as
z Z
%= fOA(g)dg;/fo A©)dg, (L.5)
z
r—af[ A (1.6)
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in which Z denotes the total length of the column, so that equation (1.1) may be rewritten in the
form P P ‘
—a}(ci——/tni)+eé%(ci+vni) =0 (=12.,M). (L.7)

In addition, we have the equilibrium relation that correlates n; as a continuous function of the
set {¢;} with as many derivatives as may be required:

Ny =Ny (CrsCoyeensCpr) (E=1,2,..., M). (1.8)

Equations (1.7) and (1.8) represent a quasilinear system of M partial differential equations of
first order. It has been shown that the solution to Riemann’s problem for such equationsis given by a
one-parameter family so that the image in the hodograph spacet lies on a single curve, I" (Rhee
et al. 1970). Introducing the differentiation along the curve I’

Dn, M ong (de;
iy (R0 1.
(d) (1.9)

Bjcj - i=1 9;
we can deduce from equation (1.7) the equation

_(dT\ _ 1+vDn|De;
o= (djc),,, =€ 4 Gn,[Te, (1.10)

where w is the parameter running along the curve I'. Since o must be independent of the subscript 7,

we obtain the equation Tn, Tny _ Dny i
Doy Doy T Doy’ 1)
which is the fundamental differential equation of the present problem.
Rearranging equation (1.10), we obtain
D - .
Ml TZC (j=1,2,..,M) (1.12)

De,  po+ve

which, upon expansion, can be rewritten in the form

on; dey on; de;y (om; o—e \de; Ony deyy, on; dey, .
=+ ... —— N ——= =0 = e
oc; dw 0c;; dow oc; pno+ve)dow oy do + ocyr dw (i=12,..,M)
or briefly in matrix form (Vn S I) de _ 0, (1.13)
po+ve [ do

where d/dw represents the differentiation with @ as the independent variable along the I'. In
equation (1.13) V represents the gradient in the hodograph space and n or ¢ denotes the column
vector of M elements, {n;} or {c;}, respectively. The existence of I" requires the condition

o—¢
Mo +ve

Vn —

I|=o0. (1.14)

The system (1.7), on the other hand, can be put into matrix form
ac oc
(I—,an)a+e(I+VVn)a—T= 0, | (L.15)

1 The M-dimensional space of dependent variables will be called the hodograph space.
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192 HYUN-KU RHEE, R. ARIS AND N.R.AMUNDSON

and thus the characteristic direction, according to the mathematical theory, is given by the eigen-
value A of the matrix e(I—-uVn)=*(I+vVn) if (I—-pVn) is non-singular. In other words, the
characteristic direction A must satisfy the equation

le(I—pVn)=t (I4+vVn)—Al| =0
or, by applying the rule for the product of matrices,

e
HA+ve

‘Vn I|=o. (1.16)

Comparing equation (1.16) with equation (1.14), we conclude that o defined by equation (1.10)
represents the characteristic direction of the system (1.7).

(b) Discontinuous field

Suppose the distribution of solutes contains a discontinuity within the domain? of interest. Such
a discontinuity is governed by the same principle of conservation of mass, which may be formulated
as a balance across the discontinuity and, in terms of the dimensionless variables, gives the equation

dr s_el“"V[”i]/[%]
(dx) =T ulnlled” (L.17)

Here the bracket [ ] denotes the jump of the quantity enclosed across the discontinuity. Equation

o8 =

(1.17) is the generalized Rankine—Hugoniot relation and oS represents the reciprocal of the propaga-
tion speed of the discontinuity.
Since adsorption equilibrium is established, equation (1.17) holds for every i and therefore
we have the compatibility condition
[n] _[m]  _ [j’M] (1.18)

[e1] B [6] S [eml

which must be satisfied across a discontinuity.

Equations (1.17) and (1.18) form a system of M algebraic equations so that, given the state on
one side, the state across the discontinuity can be determined if one of the ¢;’s or o8 is given. Conse-
quently, the state on the opposite side of a discontinuity is given by a one-parameter family.

The state, however, is not determined uniquely because the ratio [;]/[¢;] is independent of the
jump direction. In order to select the physically relevant solution, it is necessary to introduce an
additional condition that specifies the jump direction appropriately. Such a condition, which is
called the entropy condition, can be deduced from the conservation law for the continuous field,
more specifically from equation (1.10) (cf. §2(c)).

(¢) Initial and boundary conditions

For a Riemann’s problem with finite domain we shall have data prescribed as follows:

at 7=0, ¢=¢ for O<x<l; (1.19)
at x=0, ¢;=c¢f for 7> 0; (1.20)
at x=1, n,=n for 7>0. (1.21)

Since equilibrium may not be established outside the contacting region (domain), the states of the
outgoing flows (n¢ and ¢?) cannot be determined, in general, from the above.

1 Here the domain coincides with the region of contact between phases; i.e. 0 < x < 1 and 7 > 0.
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The conservation law, on the other hand, requires that the conditions

a 0+
1 nd—n;

Pl (1.22)
2 )
nb —pl-
=i (1.23)

must be satisfied over the corresponding boundary where n{" and n}~ are the equilibrium values
corresponding to ¢ and ¢}, respectively. These conditions are sufficient to determine the states
of the outgoing flows and, in fact, are the relevant boundary conditions. It is interesting to note their
analogy to a free boundary condition. Although ¢? and 7} remain constant, #? and ¢} may not be
constant.

By applying the conditions (1.22) and (1.23) we allow the appearance of a discontinuity at
either boundary. Such a discontinuity will be called the boundary discontinuity and must be
distinguished from that discussed in §1 (). In the following we shall denote the boundaries at
x = 0 and x = 1 by the symbols %2 and %P, respectively

2. BAsSIC THEORY

It is remarkable that the fundamental differential equation (1.11) and also the compatability
condition (1.18) are independent not only of the system parameter » but also of the motion of each
phase . The image of a solution in the hodograph space is therefore invariant under variation of
speed of either phase and intrinsic to the equilibrium relationship between phases.

We shall now assume that the equilibrium is represented by the Langmuir adsorption isotherm

ny =t (21,2 M), (2.1)

in which N is the saturation value of n; and K is the isotherm parameter intrinsic to the solute 4,
and the adsorbent. To avoid duplication extensive references will be made to the previous article by
Rhee et al. (1970).
(a) Riemann invariants and characteristic parameters
For the Langmuir adsorption isotherm (2.1) we found that the compatibility condition (1.18) is
an integral of the fundamental differential equation (1.11), and that there are M different kinds of
solution. Of these the £th kind, for example, is given by the one-parameter family

Gi— ;=IO (D-D°) (i=1,2,...,M), (2.2)

where ¢, = K;c;, (2.3)
M

D=1+ ¥ Ky, ‘ (2.4)
i=1

and the superscript o denotes a fixed state. Note that the parameter D may be related to the coverage
O of adsorption sites by the equation

&= Sn/N=1-1/D. (2.5)
i=1

Equation (2.2) shows that each /'® is straight and passes through the fixed point {¢7} in the
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194 HYUN-KU RHEE, R. ARIS AND N. R.AMUNDSON

hodograph space @ (M ). Its direction is given by the fth Riemann invariant J{¥, which remains
constant along the I'® and, for the Langmuir isotherm, takes the form

JU = _ Ky ) (2.6)

The characteristic parameter wg,, given by the £th root of the Mth order algebraic equation

M K,
Z VK —o ! 2.7)
is the only parameter varying along the I'®, Equation (2.7) is a continuous transformation of the
hodograph space @ (M) onto the w-space 2 (M ). Since it is one-to-one and its inverse

NK;, \ ™ 1-NKjoz .
= (22 ) R =12 M 2.8
¢’L (U)(i) )]41—;[1 ]'_K’L/Kj (l ) ( )
IF

is also continuous, the transformation defines a homeomorphism between the two spaces and this
corresponds to the A-transformation of Hellferich (1968). It is clear from the above that the image of
a I'®in Q (M) falls on a straight line parallel to the oy-axis.

Another useful form of invariant is

A = NKy(D — /| JP) = oy D, (2.9)
which is independent of the choice of 7 and remains constant along a I'®, Tt follows from equation
(2.7) that 0< 0y < W < ... <ogp < NKy, (2.10)
and hence 0< Agy < Ay < ... < Ay, (2.11)

(b) Characteristics and simple waves

Since there are M different kinds of I', there correspond M different values of o

dT) D +vog,
o = |5 e W— 2.12
(k) (dx Wk D _Iuw(k) ( )
D2+ vy
= 2.13
D~y 219

for k=1,2,...,M and accordingly M different kinds of characteristics exist as befits a totally
hyperbolic system. It follows from equation (2.10) or (2.11) that

1 1 1
S>> — -k (2.14)

> .
Ca O 407)) €v

D |

A C® grows steeper as y increases until it becomes vertical when
jo = i = Do, (2.15)

We shall call #® the critical ratio of flow rates for the C®. For flow rate ratios above the critical
value C® is directed backwards.

According to the simple wave theory, the (£)-Riemann invariants remain constant in a (k)-simple
wave region and thus the region in the physical plane is covered by a family of straight


http://rsta.royalsocietypublishing.org/

I~
_SE )

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MULTICOMPONENT ADSORPTION 195

(k)-characteristics C® which carry constant values of ¢p;. Theimagein 2 (M) fallson a 1'® and thus
the state is represented by a one-paramecter family, equation (2.2).
Since it is required of a (k)-simple wave to have

90y _ (?.%) oD _
Ak

“ox D), ax ="

whereas it follows from cquation (2.13) that

( 90, (k))
9wy <o
\ oD Agky

for any k, we conclude that in a simple wave D, and thus also the coverage 0, increase in the
x-direction. Note that w, is inversely proportional to the parameter D in the (k)-simple wave.

T
constant /
state
L
constant

state

ig
(0] x

F1GURE 2. Physical plane portrait of a (k)-simple wave. D' < D'; wf, > wl; A, =constant.

For a (k)-simple wave it scems appropriate to define two critical values of x; one is the lower

critical ratio (cf. figure 2 for notation) 1 = Dol (2.16)
and the other is the upper critical ratio
p*® = DUyl (2.17)

It then follows that for s < u{¥ the (k)-simple wave is forward-facing and for 4 > *® it is back-
ward-facing, whereas for " < p < p*® there exists a vertical C™® so that the corresponding state is

stationary.
It can be shown from equation (2.13) that
P (30'(1.«,)) <0 if oy >0, 2.18)
oD\ op >0 if oy <O '

As p increases, therefore, a (k)-simple wave becomes more expansive if it is forward-facing and
becomes less expansive if it is backward-facing.

(¢) Shock waves

If the parameter D decreases in the x-direction, a physically impossible situation with over-
lapping characteristics obtains, and the state cannot be described by a continuous solution. Con-
sequently, a discontinuous solution must be introduced which will be governed by the entropy

14 Vol. 269g. A.
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196 HYUN-KU RHEE, R. ARIS AND N. R. AMUNDSON

condition, namely that at a point of discontinuity the parameter D and so the coverage ® decrease
from the left-hand side to the right.

Since the compatibility condition is an integral of the fundamental differential equation, it is
clear that there are A different kinds of discontinuity. The image of a discontinuity in 2 (M), if it
is of the kth kind, falls on a I'®, A discontinuity of the £th kind, therefore, connects the states on
both sides by a one-parameter family

[¢1] = J(zk)[DJ (l'_‘ L2,.., M) (2.19)
and propagates in the direction o ( dr )s . DD 4 vy
(k) - dx (k) - DlDr“‘ﬂA(k).

where the superscripts 1 and r denote the left- and right-hand sides of the discontinuity, respectively.

(2.20)

Here the invariant A, is given by
A(k) = OJ%k)Dl = (I)fk) _DI'. (2.21)

Consequently, equation (2.20) can be rewritten in the form

., Dl -+ V(,l)rk
05 = et LK) 2.22
© "Dl —porty, %2

D "
= ifﬂ’(lw_ (2.23)

Dr — poyy,

It then follows from the inequality (2.10) that, with a fixed state on one side,

1 1 1 1
—>—s—>—s‘—>...>"s—>—‘ﬁ“. (2.24)
e oY) o ot ev

On the other hand, by comparing equations (2.22) and (2.23) with equation (2.12) and using

the entropy condition we can show that
1 1 1
> e > (2.25)
Ty Ty Tk
and further, by introducing equation (2.10), we obtain the inequality

1 1 1
P s P (2.26)
Ow+ty  O@w  Tk-1
According to Lax (1957), equations (2.25) and (2.26) are precisely the inequalities characterizing
shocks. An immediate consequence is that every discontinuity appearing in the domain is a shock.

A (k)-shock line S® grows steeper as u increases and becomes vertical when
M= /,LS(k) = Dl/wzk) = Dr/w%k). (2.27)
For this critical ratio #5® the (k)-shock becomes stationary and for 4 > u*® the shock propagates

backwards.
We notice that, for the fluid phase,

dx 1 D

T=- (2.28)

d, for the solid ph & __ ¢ (2.29)
and, for the solid phase, i .

Comparing these with equation (2.24), we find that no shock can propagate faster than the fluid
phase when moving forwards or than the solid phase when going backwards. The same is true


http://rsta.royalsocietypublishing.org/

. \
_SE )

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MULTICOMPONENT ADSORPTION 197

for any disturbance that is represented by a discontinuity in some derivatives since it propagates
along the characteristics (cf. equation (2.14)).

It can be shown that entropy increases across a shock from the right-hand side to the left; i.e. in
the direction of increasing coverage @. This remarkable observation proves that the entropy con-
dition is consistent with the second law of thermodynamics. Details will be presented in a forth-
coming monograph.

(d) Patterns of interaction

Since every wave can face either forward or backward depending upon the parameter g, it is to be
expected that two adjacent waves may meet in the domain and influence each other. Such a
phenomenon is called an interaction.

The inequalities (2.14), (2.24), (2.25) and (2.26) specify the sets of waves that can interact
(Patterns of interaction) and the image in the space £ (M) illuminates the mechanism of each
pattern (Basic principles of interaction). Since both the patterns and principles of interaction are
independent of , it is clear that they remain the same as those that have been established for the
fixed bed chromatography (cf. Rhee et al. 1970). There are only three different patterns with
different principles and we shall briefly rephrase these as follows:

Pattern I (superposition). Two shock waves of the same kind necessarily interact with each other
and are superposed instantly.

Pattern II (absorption). A simple wave necessarily interacts with a shock wave of the same kind and
is absorbed by the latter.

Pattern III (transmission). A (k)-wave necessarily interacts with an (m)-wave, travelling ahead of it
if m > k, or travelling behind it if m < £, and is transmitted across it.

In the region of interaction the state varies along each characteristic or on one or both sides of the
shock involved and thus the wave propagation gets accelerated or decelerated. When a (k)-simple
wave is transmitted across an (m)-wave where m = £, the parameter wg, remains invariant along
each C®, In addition, it follows from equation (2.12) that '

Jo (k))
— < 0.
( 3D W(k)

An immediate consequence is that, if D increases along a C®), the disturbance carried by it is
accelerated or vice versa.

When a (k)-shock is superposed or absorbed by another (£)-wave, the invariant Ay remains
constant throughout. On the other hand, if a (£)-shock is transmitted across an (m)-wave where
m = k, the parameter w(, remains constant on both sides. It can be shown directly from equation:s

(2.20), (2.22) and (2.23) that
ﬁa?k)) (8afk))
<0, (=% < 0;
(3D1' Axy 3D1 A ’

Ba(sk)) (ﬁaf‘k ))
= < 0, < 0;
( aDr w%k) aDl (z){]c)

and hence a shock is accelerated if DT and/or D! increase as it propagates or vice versa.

14-2
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3. SEMI-INFINITE COLUMN

In this section we shall assume that the contacting region extends indefinitely beyond the point
x = 1 and the data are specified as

at 7=0, ¢, =¢, for x> 0;1

(3.1)
at x=0, ¢, =a¢y for T>O;J

form = 1,2,..., M. This is a Riemann’s problem. ‘

For 2 = 0 (fixed bed) the solution has been given previously in terms of constant states separated
by centred simple and shock waves (Rhee ¢t al. 1970). The M waves are ordered counterclockwise
from the (1)-wave to the (M)-wave and the (k)-constant state {¢\%} that appears between the (k)-
and (k + 1)-waves is given by the equations

kol M i
D® = Di ] G0 _ pa I “u (3.2)
=1 0 J=l+1 0(j)
and &y — Pl ﬁ 1=K, NKm'/w‘?j? = ¢ ﬁ 1= MR, oy NK,,|oij) (3.3)
" TS L= N[0y T ek 1= N oy '

where the sets {w};} and {0} represent the images of the initial and entry data in Q (M), respectively.
Construction of wave solutions in the physical plane is straightforward, and the criterion concerning
the wave type is given as follows: the (k)-wave is a simple wave if w{, < %, and it is a shock wave if
Wiy > of. The regions of M waves so constructed and M — 1 constant states in between represent
the range of influence of the discontinuity at the origin.

The image of the solution in £ (M) is independent of z and so are equations (3.2) and (3.3). The
criterion concerning wave type (entropy condition) is also independent of x. For sufficiently small
values of u, therefore, the solution can be determined by applying, in principle, the same procedure
as for fixed bed problems.

Here we notice that, as u increases, the range of influences rotates counterclockwise maintaining
its overall feature because every characteristic as well as shock line becomes steeper. It is then
expected that for certain values of 4 one part of the range of influence lies in the domain while the
other part lies outside. Along the line x = 0+ there corresponds a unique state {¢); }. This implies
that the discontinuity at the origin is split into two parts {¢}, — ¢%} and {¢0;" — g2}, The first part
influences the solution in the domain in such a way that equation (1.7) is satisfied, whereas the
second part influences the state of the outgoing solid phase in such a way that equation (1.22) is
satisfied. Application of equation (1.22) is straightforward since each of the M equations is inde-
pendent. This will result in a boundary discontinuity on %2,

The remaining question now is how to determine the state {¢)} for a given value of . Various
situations are expected to arise over the whole spectrum of 2 but those can be classified appropriately
into four categories by making cuts at every critical value along the u-spectrum. Here the critical
values are given as follows:

If 0%, > o}
ey > Wy i = D(k)/w?’“”l
p39 = DFDfaly,
and if 0@ < Vi, 10 = p*® = ps® = DBy, (3.5)

for k = 1,2,..., M with DM = D2 and D© = D1,
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(1) Lower range
This range corresponds to the portion
0 <p<pP (3.6)

of the p-spectrum. The whole range of influence lies in the domain and thus ¢, = ¢},. Equation
(1.22) then becomes trivial and simply yields %, = n, o, where n, ., represents the equilibrium
value corresponding to the state {¢%}. The solution is continuous across the boundary and equili-
brium is established at the boundary %>.

A schematic diagram of the solution is shown in figure 3 (a). The boundary %2 is inward space-
like (cf. Courant & Friedrichs 1948). In view of the way in which its data is transmitted such a
boundary will be called an emissive boundary.

oy

(a)

c®
R
i
o X 0 x
(c) (d)

Ficure 3. Schematic portrait of solutions in the physical plane for various ranges of 4 (semi-infinite column).
(a) Lower range; (b) (k)-intermediate range; (¢) upper range; (d) (k)-transition range, ==== , Boundary
discontinuity.

(i1) (k)-intermediate range

Along the g-spectrum this range covers the portion
lu*(k-l-l) <p< /'L(,f). (3.7)

Only the first £ waves are directed forward and ¢ = (. The solution is discontinuous across the

boundary and the state {n%} is not given by the equilibrium relation but by equation (1.22).
Figure 3 (b) illustrates the physical plane portrait of a solution. The boundary % is time-like

with the first & characteristics (C® ~ C®) directed forward and the next M — £ ones (C*+D ~ CD)
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backward. One may regard the characteristics to be reflected at a time-like boundary as shown in
figure 3 (b) (cf. the characteristics of the linear wave equation). A time-like boundary is partially
emissive and partially absorptive in the data transmitting behaviour.

(iii) Upper range

Here the parameter x has the range
ﬂ*(]) < @ < oo. (3.8)

The range of influence completely falls outside the domain and this implies that the entry data
{¢2} have no influence on the solution in the domain so that ¢3 = ¢.,. The entry data, however,
determines the state {n%} through the boundary discontinuity {¢!, — ¢2} on %

In figure 3 (¢) it is shown that the boundary #* is outward space-like and therefore absorptive.

(iv) (k)-transition range
This corresponds to the portion between the lower and upper critical ratios for the (£)-wave:
P < < e, (3.9)

In the case of a (k)-simple wave, the region is cut by the 7-axis on the left-hand side and to the
given value of z there corresponds a vertical C® which coincides with the 7-axis. The state {¢5/}
along this C® is stationary at x = 0+ and determined by the equations

DO = (uw, D®)E (3.10)
and P = P + (DO~ D®), (3.11)

Outside the domain there appears a boundary discontinuity {@%" — ¢%} characterized by equation
(1.22). The boundary #2is (k)-characteristic and has the nature of a partially emissive and partially
absorptive boundary (see figure 3 (d)).

If the (k)-wave is a shock, this range degenerates to a single point D®/w}, for which the (k)-shock
becomes stationary at ¥ = 0 and coalesces with the boundary discontinuity. Hence, the situation
will be the same as for the (£ — 1)-intermediate range. The case of £ = M is exceptional because the
discontinuity on #? is not a boundary one but an (M )-shock so that equilibrium is established
across it.

In summary, the u-spectrum consists of one lower range, one upper range, M — 1 intermediate
ranges and M transition ranges. The state of the outgoing solid phase shows a piecewise continuous
variation with respect to the parameter .

Analogous discussions can be established when the discontinuity is initially imposed at ¥ = 1 and
the contacting region extends from ¥ = 1 to x = — o0, i.e.

at 7=0, ¢,=¢ for —0<x< 1;}
: (3.12)
at x=1, n,=mn for 7>0. J

Here the sets {w,} and {of},} takes the roles of {w%,} and {wi,} in the previous case, respectively. In
the lower range the boundary %" becomes outward space-like and thus absorptive. The boundary
discontinuity is characterized by equation (1.23). In the upper range the boundary %P is inward
space-like and emissive. The intermediate and transition ranges can be discussed similarly. The
prime interest is, of course, how to determine the state {¢%"} and thereby the state {¢2} of the
outgoing fluid phase.
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4. FINITE COLUMN

In the practice of countercurrent contact, the contacting region is of finite length and the data are
prescribed in the form of equations (1.19), (1.20) and (1.21). Basic features of the analysis are
expected to remain the same except for the typical nature of the boundaries, %2 and %P, that
depends upon the parameter . In this section, therefore, we shall study mainly the nature of both
boundaries over the whole spectrum of .

Suppose at the moment that the contacting region extends in both directions so that equilibrium
is established everywhere. The images of the initial and entry data in the space £ (M) then fall on
three different points which will be denoted by I': {0}, Ea: {0%,}, and EP: {wf,}, respectively. The
image of the solution consists of M segments of distinct I'®’s arranged in the order of decreasing
(k) from E? to I' and another M segments of distinct I"®’s arranged also in the order of decreasing
(k) from I1to EP. In the physical plane, the solution can be determined by combining the two separate
solutions discussed in the previous section. After a finite period of time, however, interactions will
take place between waves emanating from different points. When every transmissive interaction is
over, the image in 2 (M) is given by M segments of distinct /"®’s arranged in the order of decreasing
(k) from E» directly to EP. Consequently, the (k)-constant state {$%)} is determined by the equations

a e P,
DW= pa [ 20— pp ) (4.1)
j=ier1 W o 0 N
§=k+12) J=120)
b
and ¢(k) _ ¢a, ﬁ lﬁvNKm/w(i) — AP ﬁ 1 ——NKm/wU) (4_2)
" "k L= NK, Jofy, 7™ 2y 1= NK, [wgy’
M -1
where DY, = (l - .Eln,}’/N) (4.3)
i
and meq = DB b N. (4.4)

We notice that equations (4.1) and (4.2) are independent of .

For a finite column, the waves emanating from the origin are forward-facing and those centred at
the point, x = 1 and 7 = 0, are backward-facing. According to pattern III of interaction, with &
wayves centred at the origin only the next M —k waves can emanate from the other end. (If one or
both of (k)-waves are shocks, then the (k)-wave may also emanate from the other end.) It is then
obvious that every forward (or backward)-facing wave, after M —£ (or k) times of transmissive
interaction reaches the other end and encounters there a boundary discontinuity characterized by
equation (1.23) (or (1.22)). When the tail of the most slowly propagating wave reaches the opposite
end, the steady state is attained since no further change will be observed afterwards. 'The steady
state is, of course, given by the (k)-constant state {¢{¥} in the domain and by equations (1.22) and
(1.23) outside the domain.

The situation changes over the whole spectrum of # and an appropriate classification can be
achieved by making cuts at critical values of 2 defined as follows:

) _

u = D9y |
— D&=1)/,b

w*® = D% D/“’(k)J

and if fy, < ), W = p*0 = ys®) = D®wp, (4.6)

for k = 1,2, ..., M with D = Ds and DO = DD,

b
If(,l)?k> > (,U(k>’
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(i) Lower range: 0 < p < u{P

All the waves are forward-facing and the boundary %2 is inward spacelike while %" is outward
spacelike. Hence, ¢5" = ¢2 and n2, = 12 ... The entry data at P has no influence on the state in
the domain since the domain of dependence never contains %" but it determines the state {¢5,} which
is connected to the state inside by a boundary discontinuity. By applying equation (1.23) we find
that @b, varies from

A +uK,,(nb —nl) at 7=0+ to G+ K, (nh, — 1 eq) Al T = Ty,

as shown in figure 4 (a).
AtT = 74 the steady state is attained and it is clear that the steady state is given by

N = n?n,eq = N¢?Jn/Da';
=0y for 0<x<1; (4.7)

P = Pon+ 1K (i, = i )

(b)
F1cUre 4. Schematic portrait of solutions in the physical plane (finite column). (a) For the lower range and (b)
for the upper range of y. ~== , Boundary discontinuity.

(ii) Upper range: p*V < u < oo

Here all the waves are directed backward and the boundary %2 is outward spacelike while #P
is inward spacelike, as shown in figure 4 (4). The situations at boundaries are reversed from those
for the lower range so that nj,” = n}, and @b, = ¢b, ., where ¢p, ., represents the equilibrium
value corresponding to the state {n>} (cf. equation (4.4)). Asshown in figure 4 (b), n3; varies from
ni, to n}, and accordingly ng, varies from nl, + (4%, — @h,) K, to nb, + (% — @b, oo) (1K -

The steady state is attained at 7 = 7, ,_and it is given by

n?n = n?n + (¢% - })n, eq)/ﬂKm;
G =P eq for 0<ix<1; (4.8)

¢}r)n = ;bn, eq*


http://rsta.royalsocietypublishing.org/

.
PN

o \

v &

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MULTICOMPONENT ADSORPTION 203

(iii) (k)-intermediate range: p*®+9 < y < pl

The first £ waves are forward-facing and the next M — k waves backward-facing. Both boundaries
are timelike and maintain boundary discontinuities. After every transmissive interaction is over, the
domain of dependence consists of segments of %2 and %P excluding the initial line 7 = 0 so that the
state there is determined by the entry data alone and independent of the initial data.

A schematic portrait in the physical plane is shown in figure 5 (a). At 7 = 7 ; when the (k)-wave
reaches # and the (k + 1)-wave %2, respectively, the steady state is attained and it is clear that we

have = )+ (98— H0) K
P =P for 0<ux<1; (4.9)

B = B9+ 1K 19)
at the steady state.

T |
[ C(k) |
| ]

1
? :
1
|
| :
| {
{1/ !
s 1
N\
i /7 7 |
[ / X U
i N
I
i \ i
| v
| NG :
| SN !
| ~ N .’ i
! ~. ]
I
[ d
TR |
| .

e 2 |
0 x 1
(b)

Ficure 5. Schematic portrait of solutions in the physical plane (finite column). (a) For the (k)-intermediate range
and () for the (k)-transition range of u. ===, Boundary discontinuity.

(iv) (k)-transition range: pi®> < p < p*®
If wf, > wp, one of the boundaries, say %2, becomes (k)-characteristic so that the corresponding

state @9 becomes stationary. As shown in figure 5 (4), the first £ — 1 waves are directed forward and
the last M — k waves backward while the (£)-wave is cut by 2. The ultimate value of ¢); is given by

PO = ¢ 4 JE Do+ — Do) (4.10)
in which DY = (uwly D) = (uwh, D%-D)1, (4.11)
Both boundaries maintain boundary discontinuities and the steady state is not attained at finite
time.

If ) < wfy, this range degenerates to asingle value D®/wl,. In the case when 0, < vl < wf,,

two (k)-shocks meet each other in the domain and the superposed (£)-shock becomes stationary.
Otherwise, the (k)-shock propagates toward a boundary and coalesces with the boundary

15 Vol. 269. A.
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discontinuity so that the situation will be the same as for the (£)- or (£ — 1)-intermediate range. In
both cases the boundaries are time-like and so discontinuous. With the stationary shock at x = x®
(0 < &8 < 1), therefore, we have

ni + (P — B) (1Ko
P =P for 0 < x < as;
G = PED for x5 <x<1;
B = B4+ (5 )
Note that ¢ = ¢2 and n{Q) = nb,. This is a special case of the steady state. If ¥¢ = 0 or 1, then
equation (4.12) is reduced to equation (4.9) for £ — 1 or %, respectively.

a
o

(4.12)

In summary, the g-spectrum consists of one lower range, one upper range, M — 1 intermediate
ranges, and M transition ranges. Within the domain a unique steady state corresponds to each of
the upper, lower, and intermediate ranges. Consequently, there exist M + 1 possible steady states
for a given pair of entry data. The set of steady states are completely determined from the entry
data alone while the particular one which is attained depends also on . On the other hand, the time
7T, 5. toreach a steady state depends upon the initial and entry data, the parameter x, and the column
length. :

If v, = w,, the (k)-intermediate range as well as the (k)-transition range is not defined and
accordingly the number of possible steady states becomes one less.

In practice we may often have the condition ni, = n},. All the waves are then centred at the origin
and forward-facing. Since no interaction is involved, the analysis becomes fairly simple and yet all
the arguments used above remain valid. In particular, the time 74, for # in the (£)-intermediate
range is given directly by the slope of the uppermost C*® or §®; i.e. from equations (2.11) and (2.21),

D® + voly,

[ S L 1 te h
Ts.s. = € o sy i oy > 0g (4.13)
D®  yeP,
—_ k) b
and Teg, = Gm lf wf‘k) < (,()(k). (4.14)

In the following example we shall be concerned with the determination of various ranges and the
steady state. Therefore, the initial condition is arbitrary at the moment. Concentrations are ex-
pressed in moles per litre and the parameters are given as € = 0.4 and N = 1.0. Further informations
are tabulated as follows:

m=1 2 3 remark
K, 5.0 7.5 10.0 —
e 0.150 0.060 0.020 D* = 2.40
n?, 0.058 0.309 0.271 @° = 0.638
o, 2.445 6.667 9.586 —
Oon 2.797 5.409 8.974 —

Critical values of # are evaluated by applying equations (4.1) and (4.5) or (4.6) to determine the
ranges of yu: lower range 0<pu<0.250
(3)-transition range 0.250 < 4 < 0.286
(2)-intermediate range  0.286 < u < 0.385
(2)-transition range 0.385 < u < 0.584
(1)-intermediate range 0.584 < < 1.130
upper range 1.130 < ¢ < c0.
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There are four different steady states attainable within the domain and these are determined by
equation (4.2). If, for instance, # belongs to the (2)-intermediate range, the steady state attainable is
the (2)-constant state {c{2} and the states of the outgoing phases are given by equation (4.9). The
steady state for 4 = % is presented in the following:

m=1 2 3 D (©]
co 0.150 0.060 0.020 2.40 —
om
0<x<1 0.139 0.045 0.053 2.564 —
), 0.068 0.104 0.074 2.860 —
ny, 0.304 0.177 0.108 — 0.589
n’WL
0<x<1l) 0.271 0.132 0.207 — 0.610
b 0.058 0.309 0.271 — 0.638

m

Weobserve that more strongly adsorbable solutes 4,and 4;aredesorbed while theleastadsorbable
solute 4, is adsorbed most strongly. The solid phase experiences a slight decrease in the coverage.
This example shows that one can achieve the displacement of a strongly adsorbable solute by a less
adsorbable solute at the cost of a slight decrease in the coverage. For this example such a displace-
ment can be enhanced by using a lower value of .

Ifthe initial condition is prescribed as nl, = nb, then the time 7, ;_is given by equation (4.13) with
k = 2. For 4 = %, we obtain 7, ; = 14.70.

5, INTERACTION ANALYSIS

In the previous section we observed how interactions may take place between waves issuing
from different points of discontinuity. Patterns and principles of such interactions are discussed in
§2(d). This section is concerned with the separate analysis of each interaction. Obviously, it is
permissible to employ the same approach here as for fixed bed problems since the image in the space
(M) is independent of . Without loss of generality we shall always consider a case that can be
encountered in the operation of a finite column if the value of u belongs to the (£)-intermediate
range.

The physical plane portrait will be given for each case with the parameter D and pertinent
characteristic parameters denoted for every constant state. The image in £ (M) will not be shown
and for this the reader is referred to the previous paper (Rhee et al. 1970).

(a) Superposition and absorption

The waves involved are of the same kind and we shall consider the interaction between a pair of
(k)-waves. Theimagein £ (M) liesona single I'® and thus 4, remains constant throughout. Among
the characteristic parameters, v, is the only variable one and it is inversely proportional to D
(cf. equation (2.9)).

When two (k)-shocks meet each other (head-on collision), the two are superposed instantly as
shown in figure 6. The superposed shock is of the kth kind and propagates at a speed given by the
reciprocal of

D(k) + V(l)bk
Oy = € ) 5.1
(k) D) — ﬂw?k) ( )

As an example of absorptive interaction, we shall consider a case when a (k)-shock wave faces
a (k)-simple wave on the right-hand side as shown in figure 7. Since the simple wave is absorbed
15-2
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by theshock wave, the state on the left-hand side remains constant during the course of interaction.
If the simple wave is not centred but based on data distributed along the axis, one can define the
inverse of data as a function of D alone, £ (D).

T
gk
p®
w?k) D(k-l)
b
W)
(k)
'S DO S (k)
k)
0] x

Ficure 6. Superposition of two (k)-shocks. D® > D° > D&-1; A, = constant.

-
S
pl=p®
w(“k)
p=1
)
(xf){{) c®
°
“l) \
0 £(D) x

Ficure 7. Absorption of a (k)-simple wave by a (k)-shock wave.
D® > D&=1 > D°; Ay = constant.
Identifying D* with D along the shock line, we obtain the parametric description of the
hock li ®: (x8,75), as follows:
shock line, S®: (xs,75), as \ 79 = og(x—£), (5.2)

dre _dre fdes

dxs — dDfdD ~— "™
in which d/dD represents differentiation with D as the independent variable along the I'® so that
Ay is held constant. The two equations may be combined in the form

(5.3)

dx¢ do d
(0% —ow) (—U—)—*@()st = —qp (“wt), (5.4)

which is a linear differential equation for x$ with D as the independent variable. An appropriate
initial condition is given by W= at D= D" (5.5)

Note that equation (5.4) is non-singular since o, + o).
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Substituting equations (2.13) and (2.20) into equation (5.4) and rearranging, we obtain

d { o (D— D‘)l _(D=DY) (D'D—pdg) d [D2+vAg

dD\" D2 —pdg (v+p) AgyD dD{ ,LL/l(k)g(D)j' (5.6)

Direct integration from D = D° yields the solution in the form

2(D; Agy, DY) = 1 (

A\ D*+vA
x{(D—-D? (1 U (k’) T WD
|(0-00 (1-55) sk

D1)2 D?—pdgy D' D?—pdy,
D-D') (D) —pdyy  (v+p) Ag (D —DY?

h L () eman). o

D

where the left-hand side symbolizes that x5 is a function of D with A, and D! fixed.
If the (k)-simple wave is centred, we may take the centre as the new origin to put
£(D) = 0, and thus

D°— D\ D/
) ( P @) (5.8)

x3(D; Agy, DY) = x5 ( D—-D') (D°)2—pAyy’

Otherwise, we shall take the point (x5, 7§) as the origin of the new coordinate system to have
x5 = £(D°) = 0 and hence

2 __ D
x8(D; Agy, DY) = = {D ﬂA(k)f ( VA(k)) §D)db
D°

(v+p) A \ (D — D)2
Agy\ D24+vA
(1) Dot (s

The interaction terminates when D = D®-D,

In the (£ — 1)-intermediate range one may encounter a case when a (k)-shock wave faces a
(k)-simple wave on the left-hand side. It is clear that D remains constant at D®-b while D! varies
continuously from D° to D®, Identifying D! with D along the shock line, one can then apply
equations (5.7), (5.8), or (5.9) for x® in the form of x8(D; Ay, Dr).

(b) Transmission

Here the waves involved are of different kinds and so we shall consider the interaction between
a (k)-wave and an (m)-wave, where k£ < m. It can be shown that the image in Q (M) falls com-
pletely on a single plane parallel to the wy- and ,,-axes. It then follows that wg, unless / = & or
m, remains constant during the course of interaction. The invariant A, of course, remains
unchanged on both sides of the m-wave, whereas 4, remains constant on both sides of the (k)-
wave.

(1) Two shock waves

As shown in figure 8, the interaction is instantaneous and after the interaction the transmitted
shocks propagate along straight shock lines of slope

DIII + V(l)?’k)

U?k) =€ DI _ ﬂw?k) (5’10)
DII + V0P
and o L 5.11
(m) = DII . /'“‘)('/n) ( )
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respectively. The new constant is characterized by the pair, 0, and w{,,, and given by

4

g g®

pH
@y,
()™ (m)

S (m)

D

i i
“xy» P

(0] x

Ficure 8. Transmission between two shock waves.

(i1) Pair of a simple wave and a shock wave

When a (£)-simple wave transmits across an (m)-shock wave from the left-hand side to the
right, the physical plane portrait may be given as shown in figure 9. If the simple wave is not
centred but based on data distributed along the axis, we can define the inverse of data as a
function of D alone, £(D).

T
DlV
iy /
S(m) C(k)
D 1L
. D]I[
W, W .
(ky “om) b
iy )
0 (- (x8 ) 7(-)3
C k
wh |
(k) (m)
0 &®D) ' x

Ficure 9. Transmission between a simple wave and a shock wave.

We shall identify D! with D along the shock line and denote the differentiation with D as the
independent variable along the I'® by d/d.D. This implies that both 4, and wy,, are held constant
in the differentiation. It then follows that, along the shock line $™: (x8, 75), we have the one-

parameter description 7% = ohy (45— ) (5.13)

drs  d7s [das
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where both o}, and 0%, are functions of D alone. Combining the two equations, we obtain a
linear differential equation for x®

dxs do, d
(@t =) gp = qp * =~ qp (T (5.15)
with the initial condition x8 = x5 at D= DL , (5.16)

By introducing equations (2.13) and (2.22) equation (5.15) can be rewritten in the form

d [ (D=Abobw)?| (D —Abyobn) (D— k) d (D244
] R s 7 ()dD{Dz*ﬂA(k)g( )} G

We then integrate equation (5.17) directly from D = D' to determine the solution in the form

D — AbJob\? D2—p}
w5(D; ALy, b ) = a8 ( (k) (m)) )
(D3 Ay 0m) = 43 D — Ay [0my) (D)2 —pdiy,

1 D2 — pAly, { ( /w)m)D + v,
_ DAl bm 1— (m) (k)
(4 1) 0y (D~ Al \ P ™ A0l (1 =07 ) oo, 6P,
D
~ [ 4wty (D) aD) (5.18)
D
in which D is the independent variable and both of Aj;, and w},, are fixed parameters.
If the (k)-simple wave is centred, we can put £(D) = 0 to obtain
p p
DY — Al |wb,\2 D2 —pAt
D; Ay, 0P) = 48 ( () (m)) ) 5.19
( (k) (’m)) 0 D— A(k)/(‘)(m) (DI) ,ll//l(k) ( )

Otherwise, we may translate the coordinate axes so that the point (x§, 75) should become the
origin. Since then x§ = £(D') = 0, it follows from equation (5.18) that

1 D2 — pA} D
<Al b — (k) 1 9
03 Al ) = s D e[ (70l DV ED) 8D

b 2 1
,u,a)(m)) D% +vAy, }
—{1- E(D);. (5.20

( D) D — Aty [0m (D). (5:20)

The interaction terminates when D = DI,
By applying the invariant 4, across the (m)-shock and the invariant A{;, on the left-hand side
we can determine the state on the right-hand side in the form

o} % 1 .
Dr = &%":Dl = (wim;A( )) = for wiyy < wg) < V). (5.21)
(m m;

Every C® is refracted across the (m)-shock due to the jump in the state but the parameter wg,
remains invariant along it. Substituting equation (5.21) into equation (2.22), we obtain the slope
of the refracted C® in terms of the parameter wy,:

(@] omy) Ay + Vw(k) P
(@my| Oy Aley — 1Oy
The totality of the refracted C*s establishes the transmitted (k)-simple wave.

If an (m)-simple wave transmits across a (k)-shock wave from the right-hand side to the left,

we can follow the same procedure with appropriate replacements of parameters. In particular,
we obtain the (£)-shock line from equation (5.18), (5.19) or (5.20) in the form of x8(D; A}, wf,).

Ok = Oy S Oy < - (5.22)
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(ii1) Two simple waves

The interaction generates a non-simple and non-shock wave region in the physical plane.
Fortunately, however, the image in £ (M) falls on the inside of a rectangle surrounded by I”s
as shown in figure 10 (a) for the interaction between a (£)-simple wave and an (m)-simple wave.
Two adjacent sides, I 1T and T1I1, represent the image before interaction while the other two
denote the image after interaction.

),
(k) b i
©(m) Wony
(m)
v I II
— Wy
¥ 3
2 P(k)
a 7 1
6 5 4 i
1 1 :--w(k)
0] Wem)
(@)
T A4
C(m) ]V C (’{)
Y
5
x
A3
I o X2 X5 6 X111l
- 1.} 4 Jiig
c® I ol
L
0 (k) D (m), D x
£M(D) " £0)

Ficure 10. Transmission between two simples waves. (a) Image in Q(M). (6) Physical plane portrait.

The solution is then determined by mapping the image in £ (M) onto the physical plane.
Since for the present case @, and A, remain constant along a C®, whereas ) and 4, remain
constant along a C), the mapping can be readily performed by employing the characteristics,
C® and C™, A schematic portrait in the physical plane is shown in figure 10 (5), in which the
correspondence to figure 10 (a) is illustrated with 25 points. The procedure of mapping is briefly
discussed in the following:

First we introduce an appropriate network to the image in £ (M) and read the values of w,
and o, at each mesh point. By applying the (k)- or (m)-Riemann invariants we also determine
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the parameter D and the state {¢;} corresponding to each mesh point. The values of o, and o7,
are evaluated by using equation (2.12) at each mesh point.

In the physical plane the curved portions fII and T1IT are obtained by applying equation
(5.18) in the form of x5(D; Af,), Wimy) for T and of x8(D; Aly, Wigy) for ﬁﬁ, respectively. In the
region of interaction the portion 1 7 of a C®, for example, may be approximated by a straight line
of slope- 7 =}l + o) (5.2
and the portion 47 ofa C™ can be drawn likewise to yield the point 7 at the intersection. Iteration
completes the mapping and generates the non-simple wave solution in the region, IIT IV III.
The more mesh points we use, the more accurate solution can be obtained.

The transmitted (k)-simple wave is established by drawing a straight C® from each of the
points III, «, B, v, and IV with the slope o, given at the point. The same holds for the trans-
mitted (m)-simple wave.

6. APPLICATION
In order to illustrate applications of the theory developed we shall consider a numerical
example involved with three solutes in a finite column. The entry fluid phase contains 4,, 4, and
A; in the same amount while the incoming solid phase is half saturated by the most strongly
adsorbable solute 4, alone. Concentrations are expressed in moles per litre of individual phase.
The parameters and the initial and entry data are given as follows:

e=04, N=10;

m=1 2 3 D e
K, 5.0 10.0 15.0 — —
e 0.05 0.05 0.05 2.5 —
¢ 0.025 0.036 0.075 2.61 0.6168
, 0 0 0.5 — 0.5
Oy 3.387 7.050 12.563 — —
oy 3.803 6.516 11.597 — —
ob, 5.0 7.5 10.0 — —

The set {,,} is determined by solving equation (2.7) for the corresponding data with the equili-
brium relation (2.1).

(i) Ranges of u
Critical values of 4 are evaluated by applying equations (4.1) and (4.5) or (4.6) to determine

various ranges of y:
lower range 0<pu<0.199

(3)-transition range 0.199 < u# < 0.314
(2)-intermediate range 0.314 < 4 < 0.419
(1)-intermediate range 0.419 < x < 0.591
upper range 0.591 < 1 < o0.
(ii) Steady state
There are four different steady states attainable within the domain and these are independent

of the initial data. These states are determined by applying equation (4.2) and presented in the
following table.

16 Vol. 26g. A,
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m=1 2 3 D remark
ch 0.05 0.05 0.05 2.5 lower range
cﬁj 0.0415 0 0.1289 3.141 (2)-intermediate range
¢ 0.0476 0 0.1143 2.953 (1)-intermediate range
b eq 0 0 0.0667 2.0 upper range

The states of the outgoing phases are readily obtained by applying equations (1.22) and (1.23)
if the parameter x is given. Hence the steady-state coverage of the outgoing solid phase can be
evaluated for various values of 4 as presented in figure 11. The maximum coverage gain is attained
when g = ps® = 0.591.

% 0.16

E .

s |

S o1k | |

Ry || |

8 [ l

> | !

8.8 Lo l

o & 008 [ I I

s g Lo I

8 S T R

QJ wn

§ 0,04k /4:3) /Ig"('i) ITL‘;(Z) ‘LILS(I)

& I

£ Lo |

° | | | |

& | |1l M L 1
0 0.2 04 0.6 0.8 1.0

flow rate ratio, p

Ficure 11. Coverage gain at steady state as a function of p.

(ii1) Solution for p = 0.36

Two transmissive interactions are involved and analyses are performed by applying the result
of the previous section. Figure 12 shows the physical plane portrait of the solution. The constant
state I is the initial state and the state (k) corresponds to the (k)-constant state. The other
constant states are given in the following:

constant state 2 Cy ¢ D
1 0.0378 0.0431 0.0873 2.93
11 0.0472 0.0337 0.0756 2.708
111 0.0220 0 . ) 0.1278 3.027
v 0.0332 0 0.1488 3.398

A\ 0.0316 0 0.0980 2.628

Since in figure 12 the values of wy,, are given appropriately, one can determine the state along
each characteristic (even through the non-simple wave region) by applying equation (2.8) or the
pertinent Riemann invariants, The result is presented in figure 13 in the form of concentration
profiles at five different times. The arrow represents the propagation direction of the corresponding
wave and here the interaction phenomena are better visualized. Both boundary discontinuities
are shown. The non-simple wave solution in this particular example indicates that the (3)-simple
wave is dominant over the (2)-simple wave in the interaction.
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At 7 = 18.52, the operation reaches a steady state and this state is given by equation (4.9) for
k = 2. At this steady state 64.69, of 4, and 100 %, of 4, are adsorbed from the entry mixture while
20.7 9, of A is desorbed from the incoming solid phase. The coverage increases from 0.5 to

0.6252,
T7=1
012 / '
‘ 006}
L <@ T T s
— 1 0 , . \ LN b
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O : 012
e 16 - 2)
Q [ e Ty
| g I : NI .
T o ki 0 1 | Il \i‘ JL'_____
22 & o a
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[ a Ficure 12. Physical plane portrait of the solution for Ficure 13. Distribution of solutes for # =036 —-—,
m O p = 0.36. wgy = 3.387 above S¥; 3.803 below S®. Solute Ay; — --—, solute 4,; , solute A4j; —,
E o propagation direction.
= uw

(iv) Solution for u = 0.54

Two transmissive interactions and one superposition are analysed to generate the physical
plane portrait as shown in figure 14. Note that the constant state EP of the entry data appears for
7 < 5.0s0 that the boundary %" remains continuous meanwhile. The other constant states weré
given in the previous subsection. '

Figure 15 shows the distribution of solutes at five different times. Since the propagation
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directions are indicated by arrows, one can see the interacting wave pairs and the processes of

interaction.

At T = 7.67 the operation attains a steady state and the state is given by equation (4.9) for
k = 1. Here 7.62 9, desorption of 4; is accompanied by 91.8 %, adsorption of 4, and 100 9%,
adsorption of 4, from the entry mixture, The adsorption yield is improved from that for # = 0.36.

6 )
S(2)
LF
g S(l)
g 4r v
: =
5 c @ S(l)
(1)
2+ NVW S(
11
I S(z)
S0 ‘
Il
1 1. 1 1
0 0.2 0.4 0.6 0.8 1.0

dimensionless distance, x

Ficure 14. Physical plane portrait of the solution
for 4 = 0.54.

concentrations in the fluid phase, ¢;/mol 11

7=1.0
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Freure 15. Distribution of solutes for 4 = 0.54. — - —,
Solute 4;; — - - —, solute 4,; , solute Ag; —,
propagation direction.

As we pointed out previously, the coverage reaches the maximum when g = 0.591 and,
correspondingly, the maximum adsorption yield is achieved. The superposed (1)-shock then
becomes stationary at ¥ = 0.83 when 7 = 3.32 and the steady state is attained when 7 = 4.83.
Otherwise the physical plane portrait is analogous to figure 14. In contrast to the 5.56%, desorp-
tion of 43, 100 9%, adsorption of both 4, and 4, from the entry mixture is achieved.
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